J Am Coll Nutr 2000 Feb;19(1):52-60
The effects of varying dietary fat on performance and metabolism in trained male and female runners.
Horvath PJ, Eagen CK, Fisher NM, Leddy JJ, Pendergast DR
Department of Physical Therapy, University at Buffalo, New York 14214, USA.
OBJECTIVES: Low dietary fat intake has become the diet of choice for many athletes. Recent studies in animals and humans suggest that a high fat diet may increase VO2max and endurance. We studied the effects of a low, medium and high fat diet on performance and metabolism in runners. METHODS: Twelve male and 13 female runners (42 miles/week) ate diets of 16% and 31% fat for four weeks. Six males and six females increased their fat intakes to 44%. All diets were designed to be isocaloric. Endurance and VO2max were tested at the end of each diet. Plasma levels of lactate, pyruvate, glucose, glycerol, and triglycerides were measured before and after the VO2max and endurance runs. Free fatty acids were measured during the VO2max and endurance runs. RESULTS: Runners on the low fat diet ate 19% fewer calories than on the medium or high fat diets. Body weight, percent body fat (males=71 kg and 16%; females=57 kg and 19%), VO2max and anaerobic power were not affected by the level of dietary fat. Endurance time increased from the low fat to medium fat diet by 14%. No differences were seen in plasma lactate, glucose, glycerol, triglycerides and fatty acids when comparing the low versus the medium fat diet. Subjects who increased dietary fat to 44% had higher plasma pyruvate (46%) and lower lactate levels (39%) after the endurance run. CONCLUSION: These results suggest that runners on a low fat diet consume fewer calories and have reduced endurance performance than on a medium or high fat diet. A high fat diet, providing sufficient total calories, does not compromise anaerobic power.
Med Sci Sports Exerc 1994 Jan;26(1):81-8
Effect of dietary fat on metabolic adjustments to maximal VO2 and endurance in runners.
Muoio DM, Leddy JJ, Horvath PJ, Awad AB, Pendergast DR
Department of Physiology, State University of New York at Buffalo, School of Medicine and Biomedical Sciences 14214.
The present study examined the effects of dietary manipulations on six trained runners. The percent energy contributions from carbohydrate, fat, and protein were 61/24/14, 50/38/12, and 73/15/12 for the normal (N), fat (F), and carbohydrate (C) diets, respectively. Expiratory gases and blood responses to a maximum (VO2max) and a prolonged treadmill run were determined following 7 d on each diet. Free fatty acids (FFA), triglycerides, glycerol, glucose, and lactate were measured. Dietary assessment of subjects' N diet indicated that they were consuming approximately 700 kcal.d-1 less than estimated daily expenditures. Running time to exhaustion was greatest after the F diet (91.2 +/- 9.5 min, P < 0.05) as compared with the C (75.8 +/- 7.6 min, P < 0.05) and N (69.3 +/- 7.2 min, P < 0.05) diets. VO2max was also higher on the F diet (66.4 +/- 2.7 ml.kg-1 x min-1, P < 0.05) as compared with the C (59.6 +/- 2.8 ml.kg-1 x min-1, P < 0.05) and N (63.7 +/- 2.6 ml.kg-1 x min-1, P < 0.05) diets. Plasma FFA levels were higher (P < 0.05) and glycerol levels were lower (P < 0.05) during the F diet than during the C and N diets. Other biochemical measures did not differ significantly among diets. These data suggest that increased availability of FFA, consequent to the F diet, may provide for enhanced oxidative potential as evidenced by an increase in VO2max and running time. This implies that restriction of dietary fat may be detrimental to endurance performance.
Int J Sports Med 1999 Nov;20(8):522-6
Muscle structure with low- and high-fat diets in well-trained male runners.
Hoppeler H, Billeter R, Horvath PJ, Leddy JJ, Pendergast DR
Department of Anatomy, University of Bern, Switzerland. hoppeler@ana.unibe.ch
Endurance capacity, maximal oxygen uptake capacity (VO2max) and quantitative muscle ultrastructural composition was analyzed in 7 well-trained male runners (mean age 37.1 years, mean VO2max 60 ml/min/kg) after a one month period of a low-fat diet (dietary fat intake 18.4% and a similar period of a high-fat diet (dietary fat intake 40.6%). Between these two interventional periods a washout period of one month was interspersed in which the nutritional fat content was approx. 32%; close to the average American Diet. During all three periods protein content of the nutrition was kept nearly constant at 15%. After the high-fat diet time to exhaustion in the endurance test increased significantly by 21% while VO2max remained unchanged. Muscle mitochondrial volume density remained unchanged while the intramyocellular fat content increased by 60%. Due to large interindividual differences in this variable this difference did not become statistically significant. While some 20% of the mitochondria are located in a subsarcolemmal location, only 10% of the lipid stores are associated with these mitochondria. Less than 2% of the mitochondrial outer surface are in contact with lipid droplets whereas 25-35% of the lipid surface is in contact with mitochondria. None of these variables is significantly altered after a high-fat diet. It is concluded that the change in endurance capacity of the subjects cannot be explained based on the structural changes observed in skeletal muscle tissue. This may be related to methodological problems associated with the determination of intramyocellular fat content.
grüsse,klaus
The effects of varying dietary fat on performance and metabolism in trained male and female runners.
Horvath PJ, Eagen CK, Fisher NM, Leddy JJ, Pendergast DR
Department of Physical Therapy, University at Buffalo, New York 14214, USA.
OBJECTIVES: Low dietary fat intake has become the diet of choice for many athletes. Recent studies in animals and humans suggest that a high fat diet may increase VO2max and endurance. We studied the effects of a low, medium and high fat diet on performance and metabolism in runners. METHODS: Twelve male and 13 female runners (42 miles/week) ate diets of 16% and 31% fat for four weeks. Six males and six females increased their fat intakes to 44%. All diets were designed to be isocaloric. Endurance and VO2max were tested at the end of each diet. Plasma levels of lactate, pyruvate, glucose, glycerol, and triglycerides were measured before and after the VO2max and endurance runs. Free fatty acids were measured during the VO2max and endurance runs. RESULTS: Runners on the low fat diet ate 19% fewer calories than on the medium or high fat diets. Body weight, percent body fat (males=71 kg and 16%; females=57 kg and 19%), VO2max and anaerobic power were not affected by the level of dietary fat. Endurance time increased from the low fat to medium fat diet by 14%. No differences were seen in plasma lactate, glucose, glycerol, triglycerides and fatty acids when comparing the low versus the medium fat diet. Subjects who increased dietary fat to 44% had higher plasma pyruvate (46%) and lower lactate levels (39%) after the endurance run. CONCLUSION: These results suggest that runners on a low fat diet consume fewer calories and have reduced endurance performance than on a medium or high fat diet. A high fat diet, providing sufficient total calories, does not compromise anaerobic power.
Med Sci Sports Exerc 1994 Jan;26(1):81-8
Effect of dietary fat on metabolic adjustments to maximal VO2 and endurance in runners.
Muoio DM, Leddy JJ, Horvath PJ, Awad AB, Pendergast DR
Department of Physiology, State University of New York at Buffalo, School of Medicine and Biomedical Sciences 14214.
The present study examined the effects of dietary manipulations on six trained runners. The percent energy contributions from carbohydrate, fat, and protein were 61/24/14, 50/38/12, and 73/15/12 for the normal (N), fat (F), and carbohydrate (C) diets, respectively. Expiratory gases and blood responses to a maximum (VO2max) and a prolonged treadmill run were determined following 7 d on each diet. Free fatty acids (FFA), triglycerides, glycerol, glucose, and lactate were measured. Dietary assessment of subjects' N diet indicated that they were consuming approximately 700 kcal.d-1 less than estimated daily expenditures. Running time to exhaustion was greatest after the F diet (91.2 +/- 9.5 min, P < 0.05) as compared with the C (75.8 +/- 7.6 min, P < 0.05) and N (69.3 +/- 7.2 min, P < 0.05) diets. VO2max was also higher on the F diet (66.4 +/- 2.7 ml.kg-1 x min-1, P < 0.05) as compared with the C (59.6 +/- 2.8 ml.kg-1 x min-1, P < 0.05) and N (63.7 +/- 2.6 ml.kg-1 x min-1, P < 0.05) diets. Plasma FFA levels were higher (P < 0.05) and glycerol levels were lower (P < 0.05) during the F diet than during the C and N diets. Other biochemical measures did not differ significantly among diets. These data suggest that increased availability of FFA, consequent to the F diet, may provide for enhanced oxidative potential as evidenced by an increase in VO2max and running time. This implies that restriction of dietary fat may be detrimental to endurance performance.
Int J Sports Med 1999 Nov;20(8):522-6
Muscle structure with low- and high-fat diets in well-trained male runners.
Hoppeler H, Billeter R, Horvath PJ, Leddy JJ, Pendergast DR
Department of Anatomy, University of Bern, Switzerland. hoppeler@ana.unibe.ch
Endurance capacity, maximal oxygen uptake capacity (VO2max) and quantitative muscle ultrastructural composition was analyzed in 7 well-trained male runners (mean age 37.1 years, mean VO2max 60 ml/min/kg) after a one month period of a low-fat diet (dietary fat intake 18.4% and a similar period of a high-fat diet (dietary fat intake 40.6%). Between these two interventional periods a washout period of one month was interspersed in which the nutritional fat content was approx. 32%; close to the average American Diet. During all three periods protein content of the nutrition was kept nearly constant at 15%. After the high-fat diet time to exhaustion in the endurance test increased significantly by 21% while VO2max remained unchanged. Muscle mitochondrial volume density remained unchanged while the intramyocellular fat content increased by 60%. Due to large interindividual differences in this variable this difference did not become statistically significant. While some 20% of the mitochondria are located in a subsarcolemmal location, only 10% of the lipid stores are associated with these mitochondria. Less than 2% of the mitochondrial outer surface are in contact with lipid droplets whereas 25-35% of the lipid surface is in contact with mitochondria. None of these variables is significantly altered after a high-fat diet. It is concluded that the change in endurance capacity of the subjects cannot be explained based on the structural changes observed in skeletal muscle tissue. This may be related to methodological problems associated with the determination of intramyocellular fat content.
grüsse,klaus