There are two primary mechanism in which new fibers can be formed. First, large fibers can split into two or more smaller fibers (i.e., fiber splitting) (6,25,39). Second satellite cells can be activated (11,16,17,43,44).
Satellite cells are myogenic stem cells which are involved in skeletal muscle regeneration. When you injure, stretch, or severely exercise a muscle fiber, satellite cells are activated (16,43,44). Satellite cells proliferate (i.e., undergo mitosis or cell division) and give rise to new myoblastic cells (i.e., immature muscle cells). These new myoblastic cells can either fuse with an existing muscle fiber causing that fiber to get bigger (i.e., hypertrophy) or these myoblastic cells can fuse with each other to form a new fiber (i.e., hyperplasia).
ROLE OF MUSCLE FIBER DAMAGE
There is now convincing evidence which has shown the importance of eccentric contractions in producing muscle hypertrophy (15,24,45,46). It is known that eccentric contractions produces greater injury than concentric or isometric contractions. We also know that if you can induce muscle fiber injury, satellite cells are activated. Both animal and human studies point to the superiority of eccentric contractions in increasing muscle mass (24,45,46). However, in the real world, we don't do pure eccentric, concentric, or isometric contractions. We do a combination of all three. So the main thing to keep in mind when performing an exercise is to allow a controlled descent of the weight being lifted. And on occasion, one could have his/her training partner load more weight than can be lifted concentrically and spot him/her while he/she performs a pure eccentric contraction. This will really put your muscle fibers under a great deal of tension causing microtears and severe delayed-onset muscle soreness. But you need that damage to induce growth. Thus, the repeated process of injuring your fibers (via weight training) followed by a recuperation or regeneration may result in an overcompensation of protein synthesis resulting in a net anabolic effect (12,31).